Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Genes (Basel) ; 13(12)2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36553660

RESUMEN

While the role of common genetic variants in multiple sclerosis (MS) has been elucidated in large genome-wide association studies, the contribution of rare variants to the disease remains unclear. Herein, a whole-genome sequencing study in four affected and four healthy relatives of a consanguineous Italian family identified a novel missense c.1801T > C (p.S601P) variant in the GRAMD1B gene that is shared within MS cases and resides under a linkage peak (LOD: 2.194). Sequencing GRAMD1B in 91 familial MS cases revealed two additional rare missense and two splice-site variants, two of which (rs755488531 and rs769527838) were not found in 1000 Italian healthy controls. Functional studies demonstrated that GRAMD1B, a gene with unknown function in the central nervous system (CNS), is expressed by several cell types, including astrocytes, microglia and neurons as well as by peripheral monocytes and macrophages. Notably, GRAMD1B was downregulated in vessel-associated astrocytes of active MS lesions in autopsied brains and by inflammatory stimuli in peripheral monocytes, suggesting a possible role in the modulation of inflammatory response and disease pathophysiology.


Asunto(s)
Predisposición Genética a la Enfermedad , Esclerosis Múltiple , Humanos , Estudio de Asociación del Genoma Completo , Esclerosis Múltiple/genética , Secuenciación Completa del Genoma , Consanguinidad
2.
J Exp Clin Cancer Res ; 38(1): 313, 2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31311575

RESUMEN

BACKGROUND: Breast cancer is the most common malignancy in women worldwide. Among the breast cancer subtypes, triple-negative breast cancer (TNBC) is the most aggressive and the most difficult to treat. One of the master regulators in TNBC progression is the architectural transcription factor HMGA1. This study aimed to further explore the HMGA1 molecular network to identify molecular mechanisms involved in TNBC progression. METHODS: RNA from the MDA-MB-231 cell line, silenced for HMGA1 expression, was sequenced and, with a bioinformatic analysis, molecular partners HMGA1 could cooperate with in regulating common downstream gene networks were identified. Among the putative partners, the FOXM1 transcription factor was selected. The relationship occurring between HMGA1 and FOXM1 was explored by qRT-PCR, co-immunoprecipitation and protein stability assays. Subsequently, the transcriptional activity of HMGA1 and FOXM1 was analysed by luciferase assay on the VEGFA promoter. The impact on angiogenesis was assessed in vitro, evaluating the tube formation ability of endothelial cells exposed to the conditioned medium of MDA-MB-231 cells silenced for HMGA1 and FOXM1 and in vivo injecting MDA-MB-231 cells, silenced for the two factors, in zebrafish larvae. RESULTS: Here, we discover FOXM1 as a novel molecular partner of HMGA1 in regulating a gene network implicated in several breast cancer hallmarks. HMGA1 forms a complex with FOXM1 and stabilizes it in the nucleus, increasing its transcriptional activity on common target genes, among them, VEGFA, the main inducer of angiogenesis. Furthermore, we demonstrate that HMGA1 and FOXM1 synergistically drive breast cancer cells to promote tumor angiogenesis both in vitro in endothelial cells and in vivo in a zebrafish xenograft model. Moreover, using a dataset of breast cancer patients we show that the co-expression of HMGA1, FOXM1 and VEGFA is a negative prognostic factor of distant metastasis-free survival and relapse-free survival. CONCLUSIONS: This study reveals FOXM1 as a crucial interactor of HMGA1 and proves that their cooperative action supports breast cancer aggressiveness, by promoting tumor angiogenesis. Therefore, the possibility to target HMGA1/FOXM1 in combination should represent an attractive therapeutic option to counteract breast cancer angiogenesis.


Asunto(s)
Núcleo Celular/metabolismo , Proteína Forkhead Box M1/metabolismo , Proteína HMGA1a/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Factor A de Crecimiento Endotelial Vascular/genética , Animales , Línea Celular Tumoral , Medios de Cultivo Condicionados/farmacología , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Femenino , Proteína Forkhead Box M1/química , Proteína Forkhead Box M1/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Células HEK293 , Proteína HMGA1a/genética , Humanos , Pronóstico , Regiones Promotoras Genéticas , Estabilidad Proteica , Análisis de Secuencia de ARN , Análisis de Supervivencia , Transcripción Genética , Neoplasias de la Mama Triple Negativas/metabolismo , Pez Cebra
3.
Nat Med ; 25(4): 603-611, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30911134

RESUMEN

Transplantation of hematopoietic cells from a healthy individual (allogeneic hematopoietic cell transplantation (allo-HCT)) demonstrates that adoptive immunotherapy can cure blood cancers: still, post-transplantation relapses remain frequent. To explain their drivers, we analyzed the genomic and gene expression profiles of acute myeloid leukemia (AML) blasts purified from patients at serial time-points during their disease history. We identified a transcriptional signature specific for post-transplantation relapses and highly enriched in immune-related processes, including T cell costimulation and antigen presentation. In two independent patient cohorts we confirmed the deregulation of multiple costimulatory ligands on AML blasts at post-transplantation relapse (PD-L1, B7-H3, CD80, PVRL2), mirrored by concomitant changes in circulating donor T cells. Likewise, we documented the frequent loss of surface expression of HLA-DR, -DQ and -DP on leukemia cells, due to downregulation of the HLA class II regulator CIITA. We show that loss of HLA class II expression and upregulation of inhibitory checkpoint molecules represent alternative modalities to abolish AML recognition from donor-derived T cells, and can be counteracted by interferon-γ or checkpoint blockade, respectively. Our results demonstrate that the deregulation of pathways involved in T cell-mediated allorecognition is a distinctive feature and driver of AML relapses after allo-HCT, which can be rapidly translated into personalized therapies.


Asunto(s)
Perfilación de la Expresión Génica , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inmunología , Regulación Leucémica de la Expresión Génica , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Leucemia Mieloide Aguda/terapia , Activación de Linfocitos/inmunología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Recurrencia , Reproducibilidad de los Resultados , Trasplante Homólogo
4.
PLoS One ; 14(1): e0210097, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30629636

RESUMEN

BACKGROUND: GLI2 encodes for a transcription factor that controls the expression of several genes in the Hedgehog pathway. Mutations in GLI2 have been described as causative of a spectrum of clinical phenotypes, notably holoprosencephaly, hypopituitarism and postaxial polydactyl. METHODS: In order to identify causative genetic variant, we performed exome sequencing of a trio from an Italian family with multiple affected individuals presenting clinical phenotypes in the Culler-Jones syndrome spectrum. We performed a series of cell-based assays to test the functional properties of mutant GLI2. RESULTS: Here we report a novel deletion c.3493delC (p.P1167LfsX52) in the C-terminal activation domain of GLI2. Functional assays confirmed the pathogenicity of the identified variant and revealed a dominant-negative effect of mutant GLI2 on Hedgehog signalling. CONCLUSIONS: Our results highlight the variable clinical manifestation of GLI2 mutations and emphasize the value of functional characterisation of novel gene variants to assist genetic counselling and diagnosis.


Asunto(s)
Anomalías Craneofaciales/genética , Dedos/anomalías , Proteínas Hedgehog/metabolismo , Hipopituitarismo/genética , Proteínas Nucleares/genética , Polidactilia/genética , Dedos del Pie/anomalías , Proteína Gli2 con Dedos de Zinc/genética , Animales , Niño , Femenino , Mutación del Sistema de Lectura , Células HEK293 , Hormona de Crecimiento Humana/deficiencia , Humanos , Hipopituitarismo/congénito , Masculino , Ratones , Células 3T3 NIH , Linaje , Adenohipófisis/anomalías , Transducción de Señal/genética , Síndrome
5.
Cell Rep ; 25(3): 784-797.e4, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332656

RESUMEN

Recruitment and activation of thermogenic adipocytes have received increasing attention as a strategy to improve systemic metabolic control. The analysis of brown and brite adipocytes is complicated by the complexity of adipose tissue biopsies. Here, we provide an in-depth analysis of pure brown, brite, and white adipocyte transcriptomes. By combining mouse and human transcriptome data, we identify a gene signature that can classify brown and white adipocytes in mice and men. Using a machine-learning-based cell deconvolution approach, we develop an algorithm proficient in calculating the brown adipocyte content in complex human and mouse biopsies. Applying this algorithm, we can show in a human weight loss study that brown adipose tissue (BAT) content is associated with energy expenditure and the propensity to lose weight. This online available tool can be used for in-depth characterization of complex adipose tissue samples and may support the development of therapeutic strategies to increase energy expenditure in humans.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Biomarcadores/análisis , Biología Computacional/métodos , Obesidad/fisiopatología , Programas Informáticos , Adipogénesis , Tejido Adiposo Pardo/citología , Tejido Adiposo Blanco/citología , Adulto , Anciano , Animales , Estudios de Cohortes , Metabolismo Energético , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Termogénesis , Adulto Joven
6.
Sci Data ; 4: 170185, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29231921

RESUMEN

Gene functionality is closely connected to its expression specificity across tissues and cell types. RNA-Seq is a powerful quantitative tool to explore genome wide expression. The aim of this study is to provide a comprehensive RNA-Seq dataset across the same 13 tissues for mouse and rat, two of the most relevant species for biomedical research. The dataset provides the transcriptome across tissues from three male C57BL6 mice and three male Han Wistar rats. We also describe our bioinformatics pipeline to process and technically validate the data. Principal component analysis shows that tissue samples from both species cluster similarly. We show by comparative genomics that many genes with high sequence identity with respect to their human orthologues also have a highly correlated tissue distribution profile and are in agreement with manually curated literature data for human. In summary, the present study provides a unique resource for comparative genomics and will facilitate the analysis of tissue specificity and cross-species conservation in higher organisms.


Asunto(s)
Ratones/genética , Ratas/genética , Transcriptoma , Animales , Genómica , Especificidad de Órganos , ARN , Análisis de Secuencia de ARN
7.
EMBO Mol Med ; 9(9): 1198-1211, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28667090

RESUMEN

Clinical application of lentiviral vector (LV)-based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV-mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma-retroviral vector. However, reverse-transcribed LV DNA did trigger p53 signaling, activated also by non-integrating Adeno-associated vector, ultimately leading to lower cell recovery ex vivo and engraftment in vivo These effects were more pronounced in the short-term repopulating cells while long-term HSC frequencies remained unaffected. Blocking LV-induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of ex vivo gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies.


Asunto(s)
Terapia Genética , Vectores Genéticos/genética , Células Madre Hematopoyéticas/inmunología , Lentivirus/genética , Proteína p53 Supresora de Tumor/inmunología , Animales , Vectores Genéticos/inmunología , Trasplante de Células Madre Hematopoyéticas , Humanos , Inmunidad Innata , Lentivirus/inmunología , Ratones , Proteína p53 Supresora de Tumor/genética
8.
Clin Immunol ; 178: 20-28, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-26732860

RESUMEN

Activated PI3-kinase delta syndrome (APDS) was recently reported as a novel primary immunodeficiency caused by heterozygous gain-of-function mutations in PIK3CD gene. Here we describe immunological studies in a 19year old APDS patient for whom genetic diagnosis was discovered by Whole Exome Sequencing (WES) analysis. In addition to the progressive lymphopenia and defective antibody production we showed that the ability of the patient's B cells to differentiate in vitro is severely reduced. An in depth analysis of the myeloid compartment showed an increased expression of CD83 activation marker on monocytes and mono-derived DC cells. Moreover, monocytes-derived macrophages (MDMs) failed to solve the Mycobacterium bovis bacillus Calmette Guèrin (BCG) infection in vitro. Selective p110δ inhibitor IC87114 restored the MDM capacity to kill BCG in vitro. Our data show that the constitutive activation of Akt-mTOR pathway induces important alterations also in the myeloid compartment providing new insights in order to improve the therapeutic approach in these patients.


Asunto(s)
Linfocitos B/inmunología , Diferenciación Celular/inmunología , Células Dendríticas/inmunología , Síndromes de Inmunodeficiencia/inmunología , Macrófagos/inmunología , Adenina/análogos & derivados , Adenina/farmacología , Diferenciación Celular/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/inmunología , Humanos , Síndromes de Inmunodeficiencia/genética , Técnicas In Vitro , Inflamación , Linfopenia/genética , Linfopenia/inmunología , Macrófagos/efectos de los fármacos , Masculino , Mycobacterium bovis/inmunología , Enfermedades de Inmunodeficiencia Primaria , Proteínas Proto-Oncogénicas c-akt/inmunología , Quinazolinas/farmacología , Transducción de Señal , Serina-Treonina Quinasas TOR/inmunología , Adulto Joven
10.
Proc Natl Acad Sci U S A ; 113(51): E8286-E8295, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27930306

RESUMEN

Invariant natural killer T cells (iNKT) cells are T lymphocytes displaying innate effector functions, acquired through a distinct thymic developmental program regulated by microRNAs (miRNAs). Deleting miRNAs by Dicer ablation (Dicer KO) in thymocytes selectively impairs iNKT cell survival and functional differentiation. To unravel this miRNA-dependent program, we systemically identified transcripts that were differentially expressed between WT and Dicer KO iNKT cells at different differentiation stages and predicted to be targeted by the iNKT cell-specific miRNAs. TGF-ß receptor II (TGF-ßRII), critically implicated in iNKT cell differentiation, was found up-regulated in iNKT Dicer KO cells together with enhanced TGF-ß signaling. miRNA members of the miR-17∼92 family clusters were predicted to target Tgfbr2 mRNA upon iNKT cell development. iNKT cells lacking all three miR-17∼92 family clusters (miR-17∼92, miR-106a∼363, miR-106b∼25) phenocopied both increased TGF-ßRII expression and signaling, and defective effector differentiation, displayed by iNKT Dicer KO cells. Consistently, genetic ablation of TGF-ß signaling in the absence of miRNAs rescued iNKT cell differentiation. These results elucidate the global impact of miRNAs on the iNKT cell developmental program and uncover the targeting of a lineage-specific cytokine signaling by miRNAs as a mechanism regulating innate-like T-cell development and effector differentiation.


Asunto(s)
MicroARNs/genética , Células T Asesinas Naturales/citología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Antígenos CD1d/metabolismo , Diferenciación Celular , Citocinas/metabolismo , ARN Helicasas DEAD-box/genética , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Familia de Multigenes , Fenotipo , ARN Mensajero/metabolismo , Ribonucleasa III/genética , Transducción de Señal , Timo/metabolismo
11.
Sci Rep ; 6: 25131, 2016 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-27121911

RESUMEN

Hyperventilation following transient, CO2-induced acidosis is ubiquitous in mammals and heritable. In humans, respiratory and emotional hypersensitivity to CO2 marks separation anxiety and panic disorders, and is enhanced by early-life adversities. Mice exposed to the repeated cross-fostering paradigm (RCF) of interference with maternal environment show heightened separation anxiety and hyperventilation to 6% CO2-enriched air. Gene-environment interactions affect CO2 hypersensitivity in both humans and mice. We therefore hypothesised that epigenetic modifications and increased expression of genes involved in pH-detection could explain these relationships. Medullae oblongata of RCF- and normally-reared female outbred mice were assessed by ChIP-seq for H3Ac, H3K4me3, H3K27me3 histone modifications, and by SAGE for differential gene expression. Integration of multiple experiments by network analysis revealed an active component of 148 genes pointing to the mTOR signalling pathway and nociception. Among these genes, Asic1 showed heightened mRNA expression, coherent with RCF-mice's respiratory hypersensitivity to CO2 and altered nociception. Functional enrichment and mRNA transcript analyses yielded a consistent picture of enhancement for several genes affecting chemoception, neurodevelopment, and emotionality. Particularly, results with Asic1 support recent human findings with panic and CO2 responses, and provide new perspectives on how early adversities and genes interplay to affect key components of panic and related disorders.


Asunto(s)
Canales Iónicos Sensibles al Ácido/genética , Ansiedad de Separación/metabolismo , Código de Histonas , Trastorno de Pánico/metabolismo , Transducción de Señal , Canales Iónicos Sensibles al Ácido/metabolismo , Animales , Ansiedad de Separación/genética , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Interacción Gen-Ambiente , Masculino , Bulbo Raquídeo/metabolismo , Ratones , Trastorno de Pánico/genética , ARN Mensajero , Análisis de Secuencia de ADN , Serina-Treonina Quinasas TOR/metabolismo
12.
Sci Rep ; 6: 24647, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27097888

RESUMEN

Systems biology provides opportunities to fully understand the genes and pathways in disease pathogenesis. We used literature knowledge and unbiased multiple data meta-analysis paradigms to analyze microarray datasets across different mouse strains and acute allergic asthma models. Our combined gene-driven and pathway-driven strategies generated a stringent signature list totaling 933 genes with 41% (440) asthma-annotated genes and 59% (493) ignorome genes, not previously associated with asthma. Within the list, we identified inflammation, circadian rhythm, lung-specific insult response, stem cell proliferation domains, hubs, peripheral genes, and super-connectors that link the biological domains (Il6, Il1ß, Cd4, Cd44, Stat1, Traf6, Rela, Cadm1, Nr3c1, Prkcd, Vwf, Erbb2). In conclusion, this novel bioinformatics approach will be a powerful strategy for clinical and across species data analysis that allows for the validation of experimental models and might lead to the discovery of novel mechanistic insights in asthma.


Asunto(s)
Asma/genética , Asma/metabolismo , Redes Reguladoras de Genes , Transducción de Señal , Enfermedad Aguda , Análisis por Conglomerados , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos
13.
Front Cell Neurosci ; 9: 438, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26617488

RESUMEN

The role of REST changes in neurons, including the rapid decrease of its level during differentiation and its fluctuations during many mature functions and diseases, is well established. However, identification of many thousand possible REST-target genes, mostly based on indirect criteria, and demonstration of their operative dependence on the repressor have been established for only a relatively small fraction. In the present study, starting from our recently published work, we have expanded the identification of REST-dependent genes, investigated in two clones of the PC12 line, a recognized neuronal cell model, spontaneously expressing different levels of REST: very low as in neurons and much higher as in most non-neural cells. The molecular, structural and functional differences of the two PC12 clones were shown to depend largely on their different REST level and the ensuing variable expression of some dependent genes. Comprehensive RNA-Seq analyses of the 13,700 genes expressed, validated by parallel RT-PCR and western analyses of mRNAs and encoded proteins, identified in the high-REST clone two groups of almost 900 repressed and up-regulated genes. Repression is often due to direct binding of REST to target genes; up-regulation to indirect mechanism(s) mostly mediated by REST repression of repressive transcription factors. Most, but not all, genes governing neurosecretion, excitability, and receptor channel signaling were repressed in the high REST clone. The genes governing expression of non-channel receptors (G protein-coupled and others), although variably affected, were often up-regulated together with the genes of intracellular kinases, small G proteins, cytoskeleton, cell adhesion, and extracellular matrix proteins. Expression of REST-dependent genes governing functions other than those mentioned so far were also identified. The results obtained by the parallel investigation of the two PC12 clones revealed the complexity of the REST molecular and functional role, deciphering new aspects of its participation in neuronal functions. The new findings could be relevant for further investigation and interpretation of physiological processes typical of neurons. Moreover, they could be employed as tools in the study of neuronal diseases recently shown to depend on REST for their development.

14.
Biomed Res Int ; 2015: 202914, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26413508

RESUMEN

Cell epigenomics depends on the marks released by transcription factors operating via the assembly of complexes that induce focal changes of DNA and histone structure. Among these factors is REST, a repressor that, via its strong decrease, governs both neuronal and neural cell differentiation and specificity. REST operation on thousands of possible genes can occur directly or via indirect mechanisms including repression of other factors. In previous studies of gene down- and upregulation, processes had been only partially investigated in neural cells. PC12 are well-known neural cells sharing properties with neurons. In the widely used PC12 populations, low-REST cells coexist with few, spontaneous high-REST PC12 cells. High- and low-REST PC12 clones were employed to investigate the role and the mechanisms of the repressor action. Among 15,500 expressed genes we identified 1,770 target and nontarget, REST-dependent genes. Functionally, these genes were found to operate in many pathways, from synaptic function to extracellular matrix. Mechanistically, downregulated genes were predominantly repressed directly by REST; upregulated genes were mostly governed indirectly. Among other factors, Polycomb complexes cooperated with REST for downregulation, and Smad3 and Myod1 participated in upregulation. In conclusion, we have highlighted that PC12 clones are a useful model to investigate REST, opening opportunities to development of epigenomic investigation.


Asunto(s)
Expresión Génica/genética , Modelos Genéticos , Neuronas/metabolismo , Proteínas Represoras/genética , Animales , Regulación hacia Abajo/genética , Epigenómica , Redes Reguladoras de Genes , Neuronas/citología , Células PC12 , Ratas , Proteínas Represoras/metabolismo , Regulación hacia Arriba/genética
15.
Neurol Neuroimmunol Neuroinflamm ; 2(4): e129, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26185776

RESUMEN

OBJECTIVE: To investigate the role of known multiple sclerosis (MS)-associated genetic variants in MS familial aggregation, clinical expression, and accuracy of disease prediction in sporadic and familial cases. METHODS: A total of 1,443 consecutive patients were screened for MS and familial autoimmune history in a hospital-based Italian cohort. Among them, 461 sporadic and 93 familial probands were genotyped for 107 MS-associated polymorphisms. Their effect sizes were combined to calculate the weighted genetic risk score (wGRS). RESULTS: Family history of MS was reported by 17.2% of probands, and 33.8% reported a familial autoimmune disorder, with autoimmune thyroiditis and psoriasis being the most frequent. No difference in wGRS was observed between sporadic and familial MS cases. In contrast, a lower wGRS was observed in probands with greater familial aggregation (>1 first-degree relative or >2 relatives with MS) (p = 0.03). Also, female probands of familial cases with greater familial aggregation had a lower wGRS than sporadic cases (p = 0.0009) and male probands of familial cases (p = 0.04). An inverse correlation between wGRS and age at onset was observed (p = 0.05). The predictive performance of the genetic model including all known MS variants was modest but greater in sporadic vs familial cases (area under the curve = 0.63 and 0.57). CONCLUSIONS: Additional variants outside the known MS-associated loci, rare variants, and/or environmental factors may explain disease occurrence within families; in females, hormonal and epigenetic factors probably have a predominant role in explaining familial aggregation. The inclusion of these additional factors in future versions of aggregated genetic measures could improve their predictive ability.

16.
Bioethics ; 29(8): 580-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25644664

RESUMEN

Recent evidence of intergenerational epigenetic programming of disease risk broadens the scope of public health preventive interventions to future generations, i.e. non existing people. Due to the transmission of epigenetic predispositions, lifestyles such as smoking or unhealthy diet might affect the health of populations across several generations. While public policy for the health of future generations can be justified through impersonal considerations, such as maximizing aggregate well-being, in this article we explore whether there are rights-based obligations supervening on intergenerational epigenetic programming despite the non-identity argument, which challenges this rationale in case of policies that affect the number and identity of future people. We propose that rights based obligations grounded in the interests of non-existing people might fall upon existing people when generations overlap. In particular, if environmental exposure in F0 (i.e. existing people) will affect the health of F2 (i.e. non-existing people) through epigenetic programming, then F1 (i.e. existing and overlapping with both F0 and F2) might face increased costs to address F2's condition in the future: this might generate obligations upon F0 from various distributive principles, such as the principle of equal opportunity for well being.


Asunto(s)
Exposición a Riesgos Ambientales , Epigénesis Genética , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Política de Salud , Relaciones Intergeneracionales , Estilo de Vida , Obligaciones Morales , Responsabilidad Social , Epigenómica , Conducta Alimentaria , Política de Salud/tendencias , Estado de Salud , Humanos , Autonomía Personal , Política Pública/tendencias , Fumar/efectos adversos
17.
Clin Chim Acta ; 451(Pt A): 39-45, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-25578394

RESUMEN

BACKGROUND: Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease in infancy, affecting preterm children with low birth weight. The disease has a multifactorial aetiology with a significant genetic component; until now published association studies have identified several candidate genes but only few of these data has been replicated. In this pilot study, we approached exome sequencing aimed at identifying non-common variants, which are expected to have a stronger phenotypic effect. MATERIALS AND METHODS: We performed this study on 26 Italian severely affected BPD preterm unrelated newborns, homogeneously selected from a large prospective cohort. We used an Illumina HiSeq 2000 for sequencing. Data analysis was focussed on genes previously associated to BPD susceptibility and to new candidates in related pathways, highlighted by a prioritization analysis performed using ToppGene Suite. RESULTS: By exome sequencing, we identified 3369 novel variants, with a median of 400 variations per sample. The top candidate genes highlighted were NOS2, MMP1, CRP, LBP and the toll-like receptor (TLR) family. All of them have been confirmed with Sanger sequencing. CONCLUSIONS: Potential candidate genes have been discovered in this preliminary study; the pathogenic role of identified variants will need to be confirmed with functional and segregation studies and possibly with further methods, able to evaluate the collective influence of rare variants. Moreover, additional candidates will be tested and genetic analysis will be extended to all affected children.


Asunto(s)
Displasia Broncopulmonar/genética , Exoma/genética , Variación Genética/genética , Recien Nacido Prematuro/metabolismo , Secuencia de Bases , Displasia Broncopulmonar/diagnóstico , ADN/genética , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro/sangre , Unidades de Cuidado Intensivo Neonatal , Proyectos Piloto
18.
J Med Genet ; 52(3): 147-56, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25564561

RESUMEN

BACKGROUND: Mutations in microtubule-regulating genes are associated with disorders of neuronal migration and microcephaly. Regulation of centriole length has been shown to underlie the pathogenesis of certain ciliopathy phenotypes. Using a next-generation sequencing approach, we identified mutations in a novel centriolar disease gene in a kindred with an embryonic lethal ciliopathy phenotype and in a patient with primary microcephaly. METHODS AND RESULTS: Whole exome sequencing data from a non-consanguineous Caucasian kindred exhibiting mid-gestation lethality and ciliopathic malformations revealed two novel non-synonymous variants in CENPF, a microtubule-regulating gene. All four affected fetuses showed segregation for two mutated alleles [IVS5-2A>C, predicted to abolish the consensus splice-acceptor site from exon 6; c.1744G>T, p.E582X]. In a second unrelated patient exhibiting microcephaly, we identified two CENPF mutations [c.1744G>T, p.E582X; c.8692 C>T, p.R2898X] by whole exome sequencing. We found that CENP-F colocalised with Ninein at the subdistal appendages of the mother centriole in mouse inner medullary collecting duct cells. Intraflagellar transport protein-88 (IFT-88) colocalised with CENP-F along the ciliary axonemes of renal epithelial cells in age-matched control human fetuses but did not in truncated cilia of mutant CENPF kidneys. Pairwise co-immunoprecipitation assays of mitotic and serum-starved HEKT293 cells confirmed that IFT88 precipitates with endogenous CENP-F. CONCLUSIONS: Our data identify CENPF as a new centriolar disease gene implicated in severe human ciliopathy and microcephaly related phenotypes. CENP-F has a novel putative function in ciliogenesis and cortical neurogenesis.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Cilios/genética , Genética Médica , Microcefalia/genética , Proteínas de Microfilamentos/genética , Animales , Centriolos/genética , Cilios/patología , Exoma/genética , Femenino , Feto , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Ratones , Microcefalia/patología , Mutación , Células 3T3 NIH , Linaje , Embarazo , Pez Cebra
19.
Genome Med ; 6(9): 67, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25342980

RESUMEN

The analysis of the genomic distribution of viral vector genomic integration sites is a key step in hematopoietic stem cell-based gene therapy applications, allowing to assess both the safety and the efficacy of the treatment and to study the basic aspects of hematopoiesis and stem cell biology. Identifying vector integration sites requires ad-hoc bioinformatics tools with stringent requirements in terms of computational efficiency, flexibility, and usability. We developed VISPA (Vector Integration Site Parallel Analysis), a pipeline for automated integration site identification and annotation based on a distributed environment with a simple Galaxy web interface. VISPA was successfully used for the bioinformatics analysis of the follow-up of two lentiviral vector-based hematopoietic stem-cell gene therapy clinical trials. Our pipeline provides a reliable and efficient tool to assess the safety and efficacy of integrating vectors in clinical settings.

20.
Nucleic Acids Res ; 42(12): 7793-806, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24895435

RESUMEN

Vertebrate organogenesis is critically sensitive to gene dosage and even subtle variations in the expression levels of key genes may result in a variety of tissue anomalies. MicroRNAs (miRNAs) are fundamental regulators of gene expression and their role in vertebrate tissue patterning is just beginning to be elucidated. To gain further insight into this issue, we analysed the transcriptomic consequences of manipulating the expression of miR-204 in the Medaka fish model system. We used RNA-Seq and an innovative bioinformatics approach, which combines conventional differential expression analysis with the behavior expected by miR-204 targets after its overexpression and knockdown. With this approach combined with a correlative analysis of the putative targets, we identified a wider set of miR-204 target genes belonging to different pathways. Together, these approaches confirmed that miR-204 has a key role in eye development and further highlighted its putative function in neural differentiation processes, including axon guidance as supported by in vivo functional studies. Together, our results demonstrate the advantage of integrating next-generation sequencing and bioinformatics approaches to investigate miRNA biology and provide new important information on the role of miRNAs in the control of axon guidance and more broadly in nervous system development.


Asunto(s)
Axones/fisiología , Perfilación de la Expresión Génica , MicroARNs/metabolismo , Neurogénesis/genética , Oryzias/genética , Animales , Axones/ultraestructura , Biología Computacional , Técnicas de Silenciamiento del Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Animales , Oryzias/embriología , Oryzias/metabolismo , Retina/embriología , Retina/metabolismo , Retina/ultraestructura , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...